A Fast TVL1-L2 Minimization Algorithm for Signal Reconstruction from Partial Fourier Data

نویسندگان

  • Junfeng Yang
  • Yin Zhang
  • Wotao Yin
چکیده

Recent compressive sensing results show that it is possible to accurately reconstruct certain compressible signals from relatively few linear measurements via solving nonsmooth convex optimization problems. In this paper, we propose a simple and fast algorithm for signal reconstruction from partial Fourier data. The algorithm minimizes the sum of three terms corresponding to total variation, `1-norm regularization and least squares data fitting. It uses an alternating minimization scheme in which the main computation involves shrinkage and fast Fourier transforms (FFTs), or alternatively discrete cosine transforms (DCTs) when available data are in the DCT domain. We analyze the convergence properties of this algorithm, and compare its numerical performance with two recently proposed algorithms. Our numerical simulations on recovering magnetic resonance images (MRI) indicate that the proposed algorithm is highly efficient, stable and robust.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TV Sparsifying MR Image Reconstruction in Compressive Sensing

In this paper, we apply alternating minimization method to sparse image reconstruction in compressed sensing. This approach can exactly reconstruct the MR image from under-sampled k-space data, i.e., the partial Fourier data. The convergence analysis of the fast method is also given. Some MR images are employed to test in the numerical experiments, and the results demonstrate that our method is...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

Analysis of Reconstructed Images Using Compressive Sensing

Traditionally image reconstruction is done by performing Fast Fourier Transform (FFT). But recently there has been growing interest in using compressive sensing (CS) to perform image reconstruction.In compressive sensing, the main property of signal-Sparsity is explored for reconstruction purposes.In this paper, for image reconstruction, various optimization techniques like L1 optimization, Tot...

متن کامل

Sparse and Robust Signal Reconstruction

Many problems in signal processing and statistical inference are based on finding a sparse solution to an undetermined linear system. The reference approach to this problem of finding sparse signal representations, on overcomplete dictionaries, leads to convex unconstrained optimization problems, with a quadratic term l2, for the adjustment to the observed signal, and a coefficient vector l1-no...

متن کامل

Robust Compressive Phase Retrieval via L1 Minimization With Application to Image Reconstruction

Phase retrieval refers to a classical nonconvex problem of recovering a signal from its Fourier magnitude measurements. Inspired by the compressed sensing technique, signal sparsity is exploited in recent studies of phase retrieval to reduce the required number of measurements, known as compressive phase retrieval (CPR). In this paper, `1 minimization problems are formulated for CPR to exploit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008